Identification of near-native structures by clustering protein docking conformations.
نویسندگان
چکیده
Most state-of-the-art protein-protein docking algorithms use the Fast Fourier Transform (FFT) technique to sample the six-dimensional translational and rotational space. Scoring functions including shape complementarity, electrostatics, and desolvation are usually exploited in ranking the docking conformations. While these rigid-body docking methods provide good performance in bound docking, using unbound structures as input frequently leads to a high number of false positive hits. For the purpose of better selecting correct docking conformations, we structurally cluster the docking decoys generated by four widely-used FFT-based protein-protein docking methods. In all cases, the selection based on cluster size outperforms the ranking based on the inherent scoring function. If we cluster decoys from different servers together, only marginal improvement is obtained in comparison with clustering decoys from the best individual server. A collection of multiple decoy sets of comparable quality will be the key to improve the clustering result from meta-docking servers.
منابع مشابه
Optimal clustering for detecting near-native conformations in protein docking.
Clustering is one of the most powerful tools in computational biology. The conventional wisdom is that events that occur in clusters are probably not random. In protein docking, the underlying principle is that clustering occurs because long-range electrostatic and/or desolvation forces steer the proteins to a low free-energy attractor at the binding region. Something similar occurs in the dock...
متن کاملClusPro: an automated docking and discrimination method for the prediction of protein complexes
MOTIVATION Predicting protein interactions is one of the most challenging problems in functional genomics. Given two proteins known to interact, current docking methods evaluate billions of docked conformations by simple scoring functions, and in addition to near-native structures yield many false positives, i.e. structures with good surface complementarity but far from the native. RESULTS We...
متن کاملProtein-protein docking with multiple residue conformations and residue substitutions.
The protein docking problem has two major aspects: sampling conformations and orientations, and scoring them for fit. To investigate the extent to which the protein docking problem may be attributed to the sampling of ligand side-chain conformations, multiple conformations of multiple residues were calculated for the uncomplexed (unbound) structures of protein ligands. These ligand conformation...
متن کاملGeometric packing potential function for model selection in protein structure and protein-protein binding predictions
Protein structure prediction and protein-protein docking are two fundamental problems in molecular biology. Solving these two problems require an effective potential function to select the correct models from an ensemble of alternative conformations. Such potentials should be able to accurately assess the relative changes in protein stability upon folding and upon complexation. Because residues...
متن کاملScoring docked conformations generated by rigid-body protein-protein docking.
Rigid-body methods, particularly Fourier correlation techniques, are very efficient for docking bound (co-crystallized) protein conformations using measures of surface complementarity as the target function. However, when docking unbound (separately crystallized) conformations, the method generally yields hundreds of false positive structures with good scores but high root mean square deviation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proteins
دوره 68 1 شماره
صفحات -
تاریخ انتشار 2007